Weapons of math destruction : how big data increases inequality and threatens democracy /

We live in the age of the algorithm. Increasingly, the decisions that affect our lives (where we go to school, whether we get a car loan, how much we pay for health insurance) are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: everyone is judge...

Full description

Saved in:
Bibliographic Details
Main Author: O'Neil, Cathy (Author)
Format: Book
Language:English
Published: New York : Crown Publishers, [2016]
New York : Crown, [2016]
Edition:First edition
Subjects:
USA
Tags: Add Tag
media 1
wars 1
LEADER 30028nam a2202521 i 4500
001 2d789e38-aa52-4311-ac24-f14e4723259c
005 20250318000000.0
008 160315s2016 nyu 001 0 eng
010 |a  2016003900  |z  2016016487 
010 |a  2016003900 
010 |a 2016003900  |z 2016016487 
010 |a 2016003900 
019 |a 957230777 
020 |a 0451497333  |q (international edition) 
020 |a 0553418815 (hardcover) 
020 |a 0553418815  |q (hardcover) 
020 |a 0553418823  |q electronic  |5 MCM 
020 |a 0553418831 (pbk.) 
020 |a 0553418831  |q (paperback) 
020 |a 0553418831  |q (pbk.) 
020 |a 0553418831  |q (softcover) 
020 |a 9780451497338  |q (international edition) 
020 |a 9780553418811 (hardcover) 
020 |a 9780553418811  |q (hardcover) :  |c $26.00 
020 |a 9780553418811  |q (hardcover) 
020 |a 9780553418828  |q electronic  |5 MCM 
020 |a 9780553418835 (pbk.) 
020 |a 9780553418835  |q (paperback) 
020 |a 9780553418835  |q (pbk.) 
020 |a 9780553418835  |q (softcover) 
020 |z 0451497333  |q (international edition) 
020 |z 0553418823  |q (ebook) 
020 |z 9780451497338  |q (international edition) 
020 |z 9780451497338 
020 |z 9780553418828  |q (e-book) 
020 |z 9780553418828  |q (ebook) 
020 |z 9780553418828 
035 |a (CaONFJC)59213196 
035 |a (MCM)002448441MIT01 
035 |a (MdBJ)6277702 
035 |a (NcD)007676645DUK01 
035 |a (NhD)b64455786-01dcl_inst 
035 |a (NjP)9948187-princetondb 
035 |a (OCoLC)932385614  |z (OCoLC)957230777  |z (OCoLC)959848946  |z (OCoLC)1002159270  |z (OCoLC)1040683288  |z (OCoLC)1040686342  |z (OCoLC)1102124531  |z (OCoLC)1110106309  |z (OCoLC)1200986785  |z (OCoLC)1200992887  |z (OCoLC)1200998350  |z (OCoLC)1201020522  |z (OCoLC)1201573979  |z (OCoLC)1201627051  |z (OCoLC)1201633117  |z (OCoLC)1201871834  |z (OCoLC)1201904614  |z (OCoLC)1201972953  |z (OCoLC)1202004940  |z (OCoLC)1202022558  |z (OCoLC)1380740014 
035 |a (OCoLC)932385614  |z (OCoLC)957230777 
035 |a (OCoLC)932385614 
035 |a (OCoLC)957230777 
035 |a (OCoLC)ocn932385614  |9 ExL 
035 |a (OCoLC)ocn932385614 
035 |a (OCoLC-M)932385614 
035 |a (POOF2)514 
035 |a (PU)7209236-penndb-Voyager 
035 |a (RPB)b78464304-01bu_inst 
035 |a (Sirsi) a11832742 
035 |a (Sirsi) a11833153 
035 |a (Sirsi) cis33416088 
035 |a (Sirsi) ocn932385614 
035 |a 6277702  |9 ExL 
035 |a ocn932385614 
035 |b b64455786 
035 |z (NjP)Voyager9948187 
035 |z (OCoLC)957230777 
037 |b Random House Inc, Attn Order Entry 400 Hahn rd, Westminster, MD, USA, 21157  |n SAN 201-3975 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ  |d ON8  |d OCLCO  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d ABG  |d CHVBK  |d OCLCO 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ  |d ON8  |d OCLCO  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d RCJ 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ  |d ON8  |d OCLCO  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ  |d ON8  |d OCLCO  |d FM0  |d OU9  |d NIC 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d ON8  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d ABG  |d CHVBK  |d WVU  |d CZA  |d IGA  |d IUL  |d OCLCQ  |d OCLCO  |d ONT  |d NDS  |d NLCVW  |d JVH  |d OCLCO  |d BTS  |d XXWGB  |d DRB 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d ON8  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d ABG  |d CHVBK  |d WVU  |d CZA  |d IGA  |d IUL  |d ONT  |d NDS  |d NLCVW  |d JVH  |d BTS  |d XXWGB  |d TUL  |d RB0  |d ISM  |d TXKYL  |d OCLCO  |d TOH  |d OCLCF  |d ALDPL  |d UKBRU  |d HLNDP  |d GUA  |d OCLCQ  |d BOP  |d OCLCO  |d OCLCQ  |d QGK  |d ZVR  |d KB8  |d BGAUB  |d CUY  |d LCO  |d MNS  |d CNSLL  |d CASUM  |d OCLCO  |d QT4  |d IOG  |d QH8  |d GILDS  |d P@N  |d UX0  |d B@L  |d ISN  |d JU8  |d OCLCQ  |d TFW  |d IOK  |d VTU  |d GPRCL  |d NZ1  |d NIU  |d CRC  |d OCLCO  |d TXUPP  |d TXSCH  |d MIH  |d UBC  |d ILM  |d COF  |d IOW  |d OCLCO  |d CCH  |d WLM  |d OCLCO  |d WID  |d QQ3  |d QS8  |d OCL  |d FYF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d ALR  |d KSG  |d OCLCO  |d NJB  |d SC3  |d A7U  |d OCLCQ  |d TNX  |d XQM  |d OCLCO  |d CSO  |d OCLCQ  |d OCLCO  |d ICH  |d OCLCQ  |d OCLCO  |d QE2  |d SNN  |d GZN  |d PZX  |d OCLCO  |d PEX  |d NTG  |d M@S  |d NJR  |d ALV  |d EUM  |d CRU  |d OCLCA  |d JDP  |d KI2  |d VAN  |d BRX  |d OCLCQ  |d WUN  |d WFB  |d OCLCQ  |d OCLCO  |d AU@  |d OCLCO  |d FSP  |d NLMVD  |d WYA  |d MLSOD  |d HQV  |d WUO  |d CUI  |d EUQ  |d TCJ  |d OCLCQ  |d WYU  |d UWO  |d JVU  |d OCLCO  |d OCLCA  |d TX7  |d HV6  |d GWL  |d OCLCO  |d CTL  |d OCLCO  |d VLL  |d OCLCO  |d GDC  |d CWI  |d HTM  |d OCLCO  |d OCLCQ  |d OCLCO  |d G3B  |d S9I  |d PUG  |d OCLCQ  |d OCLCO  |d CBA  |d OCLCO  |d MTC  |d PAU  |d LKC  |d DKC  |d EVV  |d LMJ  |d OCLCO  |d EZC  |d OCLCQ  |d OCLCO  |d BDP  |d ZQP  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCA  |d V#L  |d OCLCO  |d CCR  |d OCLCO  |d OCLCQ  |d OCLCO  |d CUV  |d IL4J6  |d OCLCO  |d OCL  |d OCLCO  |d OCLCL 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d ON8  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d ABG  |d CHVBK  |d WVU 
040 |a DLC  |e rda  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCO  |d OCLCQ  |d ON8  |d OCLCO  |d FM0  |d OU9  |d FMG  |d BUR  |d VP@  |d GZT  |d CaONFJC 
042 |a pcc 
043 |a n-us--- 
049 |a CGUA 
049 |a DRBB 
049 |a JHSM  |a JHEE 
049 |a MYGG 
049 |a PAUU 
050 0 0 |a QA76.9.B45 O64 2016 
050 0 0 |a QA76.9.B45  |b O64 2016 
055 3 |a QA76.9 B45  |b O64 
082 0 0 |a 005.7  |2 23 
090 |a QA76.9.B45  |b O64 2016 
100 1 |a O'Neil, Cathy,  |e author  |0 http://viaf.org/viaf/305378637 
100 1 |a O'Neil, Cathy,  |e author  |1 http://viaf.org/viaf/305378637 
100 1 |a O'Neil, Cathy,  |e author 
245 1 0 |a Weapons of math destruction :  |b how big data increases inequality and threatens democracy /  |c Cathy O'Neil 
246 3 0 |a How big data increases inequality and threatens democracy 
250 |a First edition 
263 |a 1609 
264 1 |a New York :  |b Crown Publishers,  |c [2016] 
264 1 |a New York :  |b Crown,  |c [2016] 
264 4 |c ©2016 
300 |a x, 259 pages ;  |c 22 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
500 |a Includes index 
504 |a Includes bibliographical references (pages 219-252) and index 
504 |a Includes bibliographical references (pages [219]-252) and index 
504 |a Includes bibliographical references and index 
505 0 |a Bomb parts : what is a model? -- Shell shocked : my journey of disillusionment -- Arms race : going to college -- Propaganda machine : online advertising -- Civilian casualties : justice in the age of big data -- Ineligible to serve : getting a job -- Sweating bullets : on the job -- Collateral damage : landing credit -- No safe zone : getting insurance -- The targeted citizen : civic life 
505 0 |a Bomb parts: What is a model? -- Shell shocked: My journey of disillusionment -- Arms race: Going to college -- Propaganda machine: Online advertising -- Civilian casualties: Justice in the age of big data -- Ineligible to serve: Getting a job -- Sweating bullets: On the job -- Collateral damage: Landing credit -- No safe zone: Getting insurance -- The targeted citizen: Civic life 
505 0 |a Bomb parts: what is a model? -- Shell shocked: my journey of disillusionment -- Arms race: going to college -- Propaganda machine: online advertising -- Civilian casualties: justice in the age of big data -- Ineligible to serve: getting a job -- Sweating bullets: on the job -- Collateral damage: landing credit -- No safe zone: getting insurance -- The targeted citizen: civic life 
505 0 0 |g 1  |t Bomb parts : what is a model? --  |g 2.  |t Shell shocked : my journey of disillusionment --  |g 3.  |t Arms race : going to college --  |g 4.  |t Propaganda machine : online advertising --  |g 5.  |t Civilian casualties : justice in the age of big data --  |g 6.  |t Ineligible to serve : getting a job --  |g 7.  |t Sweating bullets : on the job --  |g 8.  |t Collateral damage --  |g 9.  |t No safe zone : getting insurance --  |g 10. The  |t targeted citizen : civic life. 
520 |a We live in the age of the algorithm. Increasingly, the decisions that affect our lives (where we go to school, whether we get a car loan, how much we pay for health insurance) are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they are wrong. Most troubling, they reinforce discrimination: if a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he is then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of big data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it is up to us to become more savvy about the models that govern our lives 
520 |a We live in the age of the algorithm. Increasingly, the decisions that affect our lives -- where we go to school, whether we get a car loan, how much we pay for health insurance -- are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this book, the opposite is true. The models being used today are opaque, unregulated, and incontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives 
520 |a "A former Wall Street quantitative analyst sounds an alarm on mathematical modeling, a pervasive new force in society that threatens to undermine democracy and widen inequality,"--NoveList 
520 |a "We live in the age of the algorithm. Increasingly, the decisions that affect our lives-- where we go to school, whether we get a car loan, how much we pay for health insurance--are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change."--Dust jacket 
520 |a "We live in the age of the algorithm. Increasingly, the decisions that affect our lives-- where we go to school, whether we get a car loan, how much we pay for health insurance--are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change."--Dust jacket 
520 |a "We live in the age of the algorithm. Increasingly, the decisions that affect our lives--where we go to school, whether we get a car loan, how much we pay for health insurance--are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change."--Dust jacket 
520 |a "We live in the age of the algorithm. Increasingly, the decisions that affect our lives--where we go to school, whether we get a car loan, how much we pay for health insurance--are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change."--Dust jacket 
520 |a "We live in the age of the algorithm. Increasingly, the decisions that affect our lives--where we go to school, whether we get a car loan, how much we pay for health insurance--are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O'Neil reveals in this urgent and necessary book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination: If a poor student can't get a loan because a lending model deems him too risky (by virtue of his zip code), he's then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a 'toxic cocktail for democracy.' Welcome to the dark side of Big Data. Tracing the arc of a person's life, O'Neil exposes the black box models that shape our future, both as individuals and as a society. These 'weapons of math destruction' score teachers and students, sort résumés, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health. O'Neil calls on modelers to take more responsibility for their algorithms and on policy makers to regulate their use. But in the end, it's up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change"--  |c Dust jacket 
648 7 |a 2000-2099  |2 fast 
648 7 |a 21st century  |2 fast 
650 0 |a Big data  |x Moral and ethical aspects  |z United States 
650 0 |a Big data  |x Political aspects  |0 https://id.loc.gov/authorities/subjects/sh00005651  |z United States  |0 https://id.loc.gov/authorities/names/n78095330-781 
650 0 |a Big data  |x Political aspects  |z United States 
650 0 |a Big data  |x Social aspects  |0 https://id.loc.gov/authorities/subjects/sh00002758  |z United States  |0 https://id.loc.gov/authorities/names/n78095330-781 
650 0 |a Big data  |x Social aspects  |z United States 
650 0 |a Democracy  |z United States 
650 0 |a Politics, Practical 
650 0 |a Social indicators  |x Mathematical models  |0 https://id.loc.gov/authorities/subjects/sh2002007921  |x Moral and ethical aspects  |0 https://id.loc.gov/authorities/subjects/sh00006099 
650 0 |a Social indicators  |x Mathematical models  |x Moral and ethical aspects 
650 6 |a Données volumineuses  |x Aspect moral  |z États-Unis 
650 6 |a Données volumineuses  |x Aspect politique  |z États-Unis 
650 6 |a Données volumineuses  |x Aspect social  |z États-Unis 
650 6 |a Indicateurs sociaux  |x Modèles mathématiques  |x Aspect moral 
650 6 |a Politique 
650 7 |a BUSINESS & ECONOMICS  |x Statistics  |2 bisacsh 
650 7 |a Big Data  |2 gnd 
650 7 |a Big data  |2 fast 
650 7 |a Big data  |2 nli 
650 7 |a Big data  |x Political aspects  |2 fast 
650 7 |a Big data  |x Political aspects  |2 sears 
650 7 |a Big data  |x Social aspects  |2 fast 
650 7 |a Big data  |x Social aspects  |2 nli 
650 7 |a Big data  |x Social aspects  |2 sears 
650 7 |a Big data  |z United States  |2 nli 
650 7 |a Democracy  |2 fast 
650 7 |a Democracy  |z United States  |2 nli 
650 7 |a Democracy  |z United States  |2 sears 
650 7 |a Demokratie  |2 gnd 
650 7 |a Economic indicators  |x Mathematical models  |x Ethical aspects  |2 sears 
650 7 |a Massendaten  |2 gnd 
650 7 |a POLITICAL SCIENCE  |x Public Policy  |2 bisacsh 
650 7 |a Politics, Practical  |2 fast 
650 7 |a SOCIAL SCIENCE  |x Privacy & Surveillance  |2 bisacsh 
650 7 |a Social conditions  |2 fast 
650 7 |a Social indicators  |2 fast 
650 7 |a Social indicators  |2 nli 
650 7 |a Social indicators  |x Mathematical models  |2 fast 
650 7 |a Soziale Ungleichheit  |2 gnd 
650 7 |a politics  |2 aat 
650 0 2 |a 2000s 
650 1 2 |a Data Interpretation, Statistical 
650 1 2 |a Datasets  |x statistics & numerical data 
650 1 2 |a Politics 
651 0 |a United States  |x Social conditions  |y 21st century 
651 1 |a United States  |x Social conditions  |y 21st century 
651 6 |a États-Unis  |x Conditions sociales  |y 21e siècle 
651 7 |a USA  |2 gnd 
651 7 |a United States  |2 fast 
651 7 |a United States  |x Social conditions  |2 sears 
758 |i has work:  |a Weapons of math destruction (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCrBtTCQrmWxbDCdvRwJC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 |i Online version:  |a O'Neil, Cathy, author  |t Weapons of math destruction.  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487. 
776 0 8 |i Online version:  |a O'Neil, Cathy  |t Weapons of math destruction.  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487  |w (OCoLC)946142559 
776 0 8 |i Online version:  |a O'Neil, Cathy, author  |t Weapons of math destruction  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487 
776 0 8 |i Online version:  |a O'Neil, Cathy, author  |t Weapons of math destruction  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487. 
776 0 8 |i Online version:  |a O'Neil, Cathy, author  |t Weapons of math destruction.  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487 
776 0 8 |i Online version:  |a O'Neil, Cathy, author  |t Weapons of math destruction.  |b First edition.  |d New York : Crown Publishers, [2016]  |z 9780553418828  |w (DLC) 2016016487 
776 0 8 |i Online version:  |z 9780553418828  |w (OCoLC)946142559 
796 2 3 |a Powell  |e donor  |x Gift of  |z Gift of the Benjamin F. Powell Library Endowment Fund 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l a11832742  |s US-CST  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l a11833153  |s US-CST  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l a11835270  |s US-CST  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 10878070  |s US-ICU  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 990024484410106761  |s US-MCM  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 991000361219707861  |s US-MDBJ  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 990147339770203941  |s US-MH  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 990076766450108501  |s US-NCD  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 991015607219705706  |s US-NHD  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 9651511  |s US-NIC  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 9999481873506421  |s US-NJP  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 9972092363503681  |s US-PU  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 0 |i 2d789e38-aa52-4311-ac24-f14e4723259c  |l 991030093909706966  |s US-RPB  |m weapons_of_math_destructionhow_big_data_increases_inequality_and_threa_____2016____1__crowna________________________________________oneil__cathy_______________________p 
999 1 1 |l a11832742  |s ISIL:US-CST  |i Stanford  |t BKS  |a BUS-SHADOW  |c QA76.9.B45 O64 2016  |d Library of Congress classification  |p UNLOANABLE 
999 1 1 |l a11833153  |s ISIL:US-CST  |i Stanford  |t BKS  |a LAW-BASEMENT  |b 36105063960640  |c QA76.9 .B45 O64 2016  |d Library of Congress classification  |k 1  |x book  |y 36105063960640  |p UNLOANABLE 
999 1 1 |l a11835270  |s ISIL:US-CST  |i Stanford  |t BKS  |p UNLOANABLE 
999 1 1 |l a11835270  |s ISIL:US-CST  |i Stanford  |t BKS  |a SCI-STACKS  |b 36105225480289  |c QA76.9 .B45 O64 2016  |d Library of Congress classification  |k 1  |x book  |y 36105225480289  |p LOANABLE 
999 1 1 |l 10878070  |s ISIL:US-ICU  |i University of Chicago  |t BKS  |a DLL-Law  |b 110426704  |c QA76.9.B45O64 2016  |d Library of Congress classification  |y 9804014  |p LOANABLE 
999 1 1 |l 10878070  |s ISIL:US-ICU  |i University of Chicago  |t BKS  |a JCL-Sci  |b 112884437  |c QA76.9.B45O64 2016  |d Library of Congress classification  |y 9648065  |p LOANABLE 
999 1 1 |l 990024484410106761  |s ISIL:US-MCM  |i MIT  |t BKS  |a DEW STACK  |b 39080037117295  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23517804400006761  |p LOANABLE 
999 1 1 |l 990024484410106761  |s ISIL:US-MCM  |i MIT  |t BKS  |a HUM STACK  |b 39080031312777  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23517804380006761  |p LOANABLE 
999 1 1 |l 991000361219707861  |s ISIL:US-MDBJ  |i Johns Hopkins  |t BKS  |a ShDC shdbook  |b 30176101171009  |c QA76.9 .B45 O54 2016  |d 0  |x jhbooks  |y 23364487380007861  |p LOANABLE 
999 1 1 |l 991000361219707861  |s ISIL:US-MDBJ  |i Johns Hopkins  |t BKS  |a LSC shmoffs  |b 31151034872741  |c QA76.9.B45 O64 2016  |d 0  |x jhbooks  |y 23364487360007861  |p LOANABLE 
999 1 1 |l 991000361219707861  |s ISIL:US-MDBJ  |i Johns Hopkins  |t BKS  |a LSC shmoffs  |b 31151033375886  |c QA76.9.B45 O64 2016  |d 0  |x jhbooks  |y 23364487350007861  |p LOANABLE 
999 1 1 |l 990147339770203941  |s ISIL:US-MH  |i Harvard  |t BKS  |a KSG GEN  |b 32044136378312  |c QA76.9.B45 O64 2016  |d 0  |x 01 BOOK  |y 232190234780003941  |p LOANABLE 
999 1 1 |l 990147339770203941  |s ISIL:US-MH  |i Harvard  |t BKS  |a LAW RES  |b 32044152045712  |c QA76.9.B45 O64 2016  |d 0  |x 01 BOOK  |y 232327493700003941  |p UNLOANABLE 
999 1 1 |l 990147339770203941  |s ISIL:US-MH  |i Harvard  |t BKS  |a GUT GEN  |b 32044133617084  |c QA76.9.B45 O64 2016  |d 0  |x 63 BOOK  |y 232533715950003941  |p UNLOANABLE 
999 1 1 |l 990147339770203941  |s ISIL:US-MH  |i Harvard  |t BKS  |a WID WIDLC  |b 32044136307964  |c QA76.9.B45 O64 2016  |d 0  |x 01 BOOK  |y 232190234760003941  |p LOANABLE 
999 1 1 |l 990076766450108501  |s ISIL:US-NCD  |i Duke  |t BKS  |a PERKN PK  |b D05091085S  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23598075260008501  |p LOANABLE 
999 1 1 |l 990076766450108501  |s ISIL:US-NCD  |i Duke  |t BKS  |a PERKN PK  |b D05231974V  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23598075270008501  |p LOANABLE 
999 1 1 |l 990076766450108501  |s ISIL:US-NCD  |i Duke  |t BKS  |a LAW LGEN  |b L00607541N  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23598075240008501  |p LOANABLE 
999 1 1 |l 991015607219705706  |s ISIL:US-NHD  |i Dartmouth  |t BKS  |a BAKER COOK  |b 33312003370384  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23171762130005706  |p LOANABLE 
999 1 1 |l 9651511  |s ISIL:US-NIC  |i Cornell  |t BKS  |a jgsm  |b 31924117814370  |c QA76.9.B45 O64 2016  |d lc  |k 1  |x Book  |y b32c4b3f-870b-437b-8882-cd997d493f1f  |p UNLOANABLE 
999 1 1 |l 9651511  |s ISIL:US-NIC  |i Cornell  |t BKS  |a math  |b 31924122965431  |c QA76.9.B45 O64 2016  |d lc  |k 1  |x Book  |y b469882a-787e-49b0-b3bc-344115356e83  |p LOANABLE 
999 1 1 |l 9999481873506421  |s ISIL:US-NJP  |i Princeton  |t BKS  |a engineer stacks  |b 32101099240291  |c QA76.9.B45 O64 2016  |d 0  |x Gen  |y 23510358200006421  |p UNLOANABLE 
999 1 1 |l 9999481873506421  |s ISIL:US-NJP  |i Princeton  |t BKS  |a firestone stacks  |b 32101099180687  |c QA76.9.B45 O64 2016  |d 0  |x Gen  |y 23510358220006421  |p LOANABLE 
999 1 1 |l 9972092363503681  |s ISIL:US-PU  |i Penn  |t BKS  |a RES_SHARE IN_RS_REQ  |b 31198063468842  |c QA76.9.B45 O64 2016  |d 0  |x BOOK  |y 23403945580003681  |p UNLOANABLE 
999 1 1 |l 991030093909706966  |s ISIL:US-RPB  |i Brown  |t BKS  |a SCIENCE STACKS  |b 31236106185484  |c QA76.9.B45 O64 2016  |d 0  |y 23323120540006966  |p LOANABLE 
999 1 1 |l 991030093909706966  |s ISIL:US-RPB  |i Brown  |t BKS  |a SCIENCE STACKS  |b 31236096201283  |c QA76.9.B45 O64 2016  |d 0  |y 23323120550006966  |p LOANABLE