Plant metal and metalloid transporters /
This edited book stands as a one place knowledge hub for plant metal(loid) transporters. The book comprehensively covers holistic aspect of metal(loid) transporters involved in uptake and translocation of essential as well as toxic metal(loid)s. Essential and beneficial metal(loid)s are required in...
Saved in:
Other Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Singapore :
Springer,
2022
Singapore : [2022] |
Subjects: | |
Tags: | Add Tag |
LEADER | 15497nam a2200781 i 4500 | ||
---|---|---|---|
001 | 75be44ab-990c-49e2-8bd5-96e8ea72f9b8 | ||
005 | 20250304000000.0 | ||
006 | m o d | | ||
007 | cr#cnu|||||||| | ||
008 | 230316s2022 si a ob 000 0 eng d | ||
020 | |a 9789811961038 |q (electronic bk.) | ||
020 | |a 981-19-6103-4 | ||
020 | |a 9811961034 |q (electronic bk.) | ||
020 | |z 9789811961021 | ||
020 | |z 9811961026 | ||
024 | 7 | |a 10.1007/978-981-19-6103-8 |2 doi | |
035 | |a (Au-PeEL)EBL7127708 | ||
035 | |a (CKB)25219365600041 | ||
035 | |a (EXLCZ)9925219365600041 | ||
035 | |a (MiAaPQ)EBC7127708 | ||
035 | |a (OCoLC)1350469510 |z (OCoLC)1349566686 |z (OCoLC)1350448288 | ||
035 | |a (PPN)265863783 | ||
035 | |a (Sirsi) a14414165 | ||
035 | |a (Sirsi) spon1350469510 | ||
040 | |a GW5XE |b eng |e rda |e pn |c GW5XE |d EBLCP |d YDX |d OCLCF |d CSt | ||
040 | |a MiAaPQ |b eng |e rda |e pn |c MiAaPQ |d MiAaPQ | ||
050 | 4 | |a QK753.M47 |b .P536 2022 | |
050 | 4 | |a QK753.M47 | |
072 | 7 | |a PST |2 bicssc | |
072 | 7 | |a PST |2 thema | |
072 | 7 | |a SCI011000 |2 bisacsh | |
082 | 0 | |a 582.019214 |2 23 | |
082 | 0 | 4 | |a 572/.52 |2 23/eng/20221108 |
245 | 0 | 0 | |a Plant metal and metalloid transporters / |c Kundan Kumar, Sudhakar Srivastava, editors |
264 | 1 | |a Singapore : |b Springer, |c 2022 | |
264 | 1 | |a Singapore : |b Springer, |c [2022] | |
264 | 4 | |c ©2022 | |
300 | |a 1 online resource (455 pages) | ||
300 | |a 1 online resource : |b illustrations (color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references | ||
505 | 0 | |a Chapter 1. Plant Metal and Metalloid Transport -- Chapter 2. Heavy Metals: Transport in Plants and their Physiological and Toxicological Effects -- Chapter 3. The Role of ABC Transporter in Metal Tranasport in Plants -- Chapter 4. Cadmium, A Non-Essential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism -- Chapter 5. Natural Resistance Associated Macrophage Proteins (NRAMP): Functional Significant of Metal Transport in Plants -- Chapter 6. Role of Heavy Metal Atpases in Transport of Cadmium and Zinc in Plants -- Chapter 7. The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport -- Chapter 8. The Multidrug and Toxic Compound Extrusion (MATE) Family in Plants and Their Significance in Metal Transport -- Chapter 9. Molecular Mechanism of Aluminium Tolerance in Plants: An Overview -- Chapter 10. Functional, Structural, and Transport Aspects of ZIP in Plant -- Chapter 11. The Function of HAK as K+ Transporter and AKT as Inward Rectifying Agent in The K+ Channel -- Chapter 12. The Mechanism of Silicon Transport in Plants -- Chapter 13. The Copper Transport Mechanism in Plants -- Chapter 14. Plant Metal Tolerance Proteins: Insight Into their Roles in Metal Transport and Homeostasis for Future Biotechnological Applications -- Chapter 15. Co-Transport Mechanism in Plants for Metals and Metalloids -- Chapter 16. Metal Nanoparticles Implication, Transport, and Detection in Plants -- Chapter 17. Transcription Factors and Metal Stress Signalling in Plants -- Chapter 18. Heavy Metal Transporters, Phytoremediation Potential and Biofortification -- Chapter 19. Phytoremediation and Biofortification: Contrasting Yet Similar Approaches of Manipulating Plant Metal(Loid) Homeostasis for Societal Benefit | |
505 | 0 | |a Intro -- Preface -- Contents -- Editors and Contributors -- 1: Plant Metal and Metalloid Transporters -- 1.1 Introduction -- 1.2 Metals and Their Significance in Plants -- 1.3 Metalloids and Their Significance in Plants -- 1.4 Metal Transporters -- 1.4.1 NRAMP Transporters -- 1.4.2 CDF Transporters -- 1.4.3 ZIP Transporters -- 1.4.4 ABC Transporters -- 1.4.5 Heavy Metal ATPases (HMAs) -- 1.5 Metalloid Transporters -- 1.5.1 Diversity of Plant Metalloid Transporters -- 1.5.2 Metalloid Absorption Channels -- 1.5.3 Metalloid Channel Transporters and Their Specificity -- 1.6 Metalloid Transporter Types -- 1.6.1 Aquaporin Transporters -- 1.6.1.1 NIP Transporters -- 1.6.2 Metalloid Efflux Transporters in Plants -- 1.6.2.1 BOR Transporters -- 1.6.2.2 Lsi2 Transporters -- 1.7 Directional Transport Systems for Metalloid Uptake -- 1.7.1 Polar Localization of Metalloid Transporters in Plants -- 1.8 Distribution of Metalloids by Transporters -- 1.8.1 Transporters for B Distribution -- 1.8.2 Transporters for Si Distribution -- 1.8.3 Transporters for As Distribution -- 1.9 Conclusions and Future Perspectives -- References -- 2: Heavy Metals: Transport in Plants and Their Physiological and Toxicological Effects -- 2.1 Introduction -- 2.2 Different Sources of Heavy Metal Pollution -- 2.3 Properties of Heavy Metal -- 2.4 Effects and Transport of Metal Pollutants into the Ecosystem -- 2.4.1 Translocation of Metals in Soil -- 2.4.2 Translocation of Metals in Water -- 2.4.3 Translocation of Metals in Air -- 2.5 Heavy Metal Pollution in the Atmosphere: A Need for Great Attention -- 2.6 Heavy Metals and Their Translocation in Plants -- 2.6.1 Chromium -- 2.6.2 Toxicology Processes -- 2.6.3 Fluoride -- 2.6.4 Toxicological Processes -- 2.6.5 Manganese -- 2.6.6 Cobalt -- 2.6.7 Nickel -- 2.6.8 Copper -- 2.6.9 Zinc -- 2.6.10 Mercury -- 2.6.11 Lead -- 2.7 Conclusion | |
505 | 8 | |a 10.3.1 Zn Uptake and Transport in Plants -- 10.4 ZIP in Plants -- 10.4.1 Structural and Functional Aspect of ZIP in Plants -- 10.4.2 Regulation of ZIP in Plants -- 10.5 Conclusion and Future Prospectus -- References -- 11: The Function of HAK as K+ Transporter and AKT as Inward-Rectifying Agent in the K+ Channel -- 11.1 Introduction -- 11.2 HAK-AKT Transporters Present in Various Plants -- 11.3 K+ Channels and Transporters -- 11.4 Adaptive Responses of Plants to Salinity Stress -- 11.5 Mechanism of Action of HAK and AKT -- 11.6 Conclusion -- References -- 12: The Mechanism of Silicon Transport in Plants -- 12.1 Silicon -- 12.2 Silicon in Plants -- 12.3 Silicon in Soil -- 12.4 Silicon and Abiotic Stresses -- 12.4.1 Water-Deficit Stress -- 12.4.2 Temperature Stress -- 12.4.3 Ultraviolet Stress -- 12.4.4 Mechanical Injury -- 12.4.5 Heavy Metal Stress -- 12.4.6 Excessive Mineral Nutrient Stress -- 12.4.7 Saline Stress -- 12.5 Silicon and Biotic Stress Mitigation -- 12.6 Omics Studies on Silicon Application on Crops -- 12.7 Reactive Oxygen Species Regulation -- 12.8 Silicon and Phytohormone Cross Talk -- 12.9 Si Accumulation and Transporters in the Plant Kingdom -- 12.10 Silicon Accumulation and Uptake -- 12.11 Silicon Transport in Xylem -- 12.12 Elements Effecting Silicon Uptake and Distribution -- 12.13 Silicon Uptake Mechanism: Influx and Efflux Transporters (Table 12.2) -- 12.14 Silicon Transport -- 12.14.1 Channel-Type Transporters -- 12.15 Silicon Uptake in Major Crops -- 12.15.1 Silicon Uptake in Rice -- 12.15.2 Silicon Uptake in Sugarcane -- 12.15.3 Silicon Uptake in Pepper -- 12.15.4 Silicon Uptake in Tomato -- 12.15.5 Silicon Uptake in Wheat -- 12.15.6 Silicon Uptake in Maize -- 12.15.7 Silicon Uptake in Cucumber -- 12.15.8 Silicon Uptake in Barley -- 12.15.9 Silicon Uptake in Arabidopsis -- 12.15.10 Silicon Uptake in Cannabis | |
505 | 8 | |a 12.16 Silicon Controversy -- 12.17 Conclusion -- 12.18 Future Recommendation -- References -- 13: The Copper Transport Mechanism in Plants -- 13.1 Introduction -- 13.2 Mechanism of Copper (Cu) Transport in Plants -- 13.3 P-Type ATPase Copper Transporters -- 13.4 COPT Copper Transporters -- 13.5 Copper Chaperones -- 13.6 Natural Resistance-Associated Macrophage Protein (NRAMP) -- 13.7 Relating the Biosynthetic and Homeostatic Roles of Cu Transport Systems -- 13.8 Conclusion -- References -- 14: Plant Metal Tolerance Proteins: Insight into Their Roles in Metal Transport and Homeostasis for Future Biotechnological Ap... -- 14.1 Introduction -- 14.2 Regulation of Cellular Metal Homeostasis -- 14.2.1 Role of MTPs in Vacuolar Compartmentalization for Metal Homeostasis -- 14.2.2 Plasma Membrane-Localized MTP Transporter Responsible for Distal Transport of Mn -- 14.2.3 MTP Transporter as Manganese Transport Proteins in Endomembranes -- 14.2.4 MTP Member Assures Mn Homeostasis During Seed Development and Germination -- 14.3 Potential of MTP in Biotechnological Application -- 14.4 Future Prospects -- References -- 15: Co-Transport Mechanism in Plants for Metals and Metalloids -- 15.1 Introduction -- 15.2 Cation Diffusion Facilitators (CDF) Transporter -- 15.3 Lsi Transporter -- 15.4 Yellow Stripe-Like Proteins (YSL) Transporter -- 15.5 Heavy Metal ATPases (HMAs) Transporters -- 15.6 ZIP Transporter -- 15.7 NRAMP (Natural Resistance-Associated Macrophage Protein) Transporters -- 15.8 ABC Transporter -- 15.9 Aquaglyceroporin Transporter -- 15.10 Conclusions -- References -- 16: Metal Nanoparticle Implication, Transport, and Detection in Plants -- 16.1 Introduction -- 16.2 Metal NPs Implications on Plants -- 16.2.1 Metal NPs Implications on Seed Germination -- 16.2.2 Metal NPs Implications on Plant Growth and Root Elongation | |
505 | 8 | |a 16.2.3 Metal NP Implications on Photosynthetic Pigments | |
505 | 8 | |a 6.4 Zinc Toxicity in Plants -- 6.4.1 Heavy Metal ATPases in Zinc Homeostasis -- 6.5 Expression of Heavy Metal ATPases -- 6.6 Prospects and Conclusion -- References -- 7: The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport -- 7.1 Introduction -- 7.2 PIP Members as Metalloid Transporters -- 7.3 NIP Members as Metalloid Transporters -- 7.4 XIP Members as Metalloid Transporters -- 7.5 Role of TIPs in Metalloid Transport and Tolerance -- 7.6 Future Perspectives -- References -- 8: The Multidrug and Toxic Compound Extrusion (MATE) Family in Plants and Their Significance in Metal Transport -- 8.1 Introduction -- 8.2 Structure of MATEs -- 8.3 Function of MATE Transporters in Metal Toxicity Tolerance -- 8.3.1 Role of MATE Transporters in Xenobiotic Toxicity Tolerance -- 8.3.2 Effect of Aluminum on Plants -- 8.3.2.1 MATE Transporters Exude Citrate in Response to Aluminum Toxicity -- 8.3.3 Role of MATE Transporters in Iron Homeostasis -- 8.4 Other Functions of MATE Transporters in Plants -- 8.4.1 Secondary Metabolite Transport -- 8.4.2 Developmental Roles -- 8.4.3 Biotic Stress -- 8.5 Conclusion and Future Perspectives -- References -- 9: Molecular Mechanism of Aluminum Tolerance in Plants: An Overview -- 9.1 Aluminum Toxicity and Tolerance in Plants: An Introduction -- 9.2 Effect of Aluminum Stress in Plants -- 9.3 Aluminum Tolerance Mechanism -- 9.3.1 External Tolerance Mechanism -- 9.3.2 Internal Tolerance Mechanism -- 9.3.3 Transcription Factors Involved in Combatting Aluminum Stress -- 9.3.4 Plant Hormones Involved in Aluminum Stress Adaptation -- 9.4 Manipulation of Aluminum-Tolerant Genes Using Transgenic Approaches -- 9.5 Conclusion and Future Perspective -- References -- 10: Functional, Structural, and Transport Aspects of ZIP in Plants -- 10.1 Introduction -- 10.2 Role of Zn in Plants -- 10.3 Zn Transport Protein in Plants | |
505 | 8 | |a References -- 3: The Role of ABC Transporters in Metal Transport in Plants -- 3.1 Introduction -- 3.2 ABC Transporter Family -- 3.3 Molecular Structure of ABC Transporters -- 3.4 Primary Superfamilies of Plant ABC Transporters -- 3.4.1 MDR Superfamily -- 3.4.2 MRP Superfamily -- 3.5 Classes of Plant ABC Transporters -- 3.6 Role of ABC Transporters -- 3.6.1 Role in Growth and Development: Transport of Hormones, Fatty Acids, and Phytate -- 3.6.2 Role in Pathogen Defense -- 3.7 ABC Transporters in Metal Transport and Sequestration -- 3.8 Future Prospects -- References -- 4: Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism -- 4.1 Introduction -- 4.2 Cadmium Transporters: Uptake and Translocation -- 4.3 NRAMP Transporters -- 4.4 ZIP Transporters -- 4.5 YSL Transporters -- 4.6 Transporters Involved in Shoot Uptake of Cadmium -- 4.7 Cadmium Stress Signaling -- 4.8 Phytochelatins and Metallothioneins: Role in Cd Detoxification -- 4.9 Cadmium Toxicity and Amino Acid Metabolism -- 4.10 Conclusion -- References -- 5: Natural Resistance-Associated Macrophage Proteins (NRAMPs): Functional Significance of Metal Transport in Plants -- 5.1 Introduction -- 5.2 Genomic Analysis -- 5.3 Structural Analysis -- 5.4 Functional Characterization -- 5.5 Expression Pattern and Regulation -- 5.6 Conclusion -- References -- 6: Role of Heavy Metal ATPases in Transport of Cadmium and Zinc in Plants -- 6.1 Introduction -- 6.2 Heavy Metal ATPases in Alleviating Heavy Metal Toxicity -- 6.3 Cadmium Toxicity in Plants -- 6.3.1 Transporters in Alleviating Cadmium Stress -- 6.3.2 Activities of HMA Within the Roots in Response to Cadmium Stress -- 6.3.3 Heavy Metal ATPase Associated with Cadmium Translocation -- 6.3.4 Heavy Metal ATPase Associated with Xylem Unloading and Cadmium Distribution | |
520 | |a This edited book stands as a one place knowledge hub for plant metal(loid) transporters. The book comprehensively covers holistic aspect of metal(loid) transporters involved in uptake and translocation of essential as well as toxic metal(loid)s. Essential and beneficial metal(loid)s are required in every biological process for normal plant growth and development, however in excess they are toxic. There are toxic metal(loid)s also whose accumulation in plants interferes with normal cellular functioning and hampers growth of plants. Hence, metal(loid) uptake and accumulation in plants is a highly regulated phenomenon involving the role of several transporters, enzymes, metabolites, transcription factors and post translational modifications. The book contains chapters from the experts and the contents of the book are presented in simple language and represented through beautiful and scientifically informative figures and tables. This book is of interest to teachers, researchers, doctoral and graduate students working in the area of plant physiology, environmental biotechnology, plant biotechnology metal(loid) stress, phytoremediation and crop biofortification | ||
588 | |a Description based on print version record | ||
588 | 0 | |a Print version record | |
650 | 0 | |a Metals |x Transport properties | |
650 | 0 | |a Plants |x Effect of heavy metals on | |
650 | 0 | |a Plants |x Effect of metals on | |
650 | 7 | |a Efecte dels metalls pesants sobre les plantes |2 thub | |
650 | 7 | |a Metals |x Transport properties |2 fast | |
650 | 7 | |a Plants |x Effect of metals on |2 fast | |
655 | 7 | |a Llibres electrònics |2 thub | |
700 | 0 | |a Kundan Kumar, |e editor | |
700 | 1 | |a Kumar, Kundan, |e editor | |
700 | 1 | |a Srivastava, Sudhakar, |e editor | |
776 | 0 | 8 | |i Print version: |a Kumar, Kundan |t Plant Metal and Metalloid Transporters |d Singapore : Springer,c2022 |z 9789811961021 |
776 | 0 | 8 | |i Print version: |t PLANT METAL AND METALLOID TRANSPORTERS |d [Place of publication not identified] : SPRINGER VERLAG, SINGAPOR, 2022 |z 9811961026 |w (OCoLC)1336985906 |
999 | 1 | 0 | |i 75be44ab-990c-49e2-8bd5-96e8ea72f9b8 |l a14414165 |s US-CST |m plant_metal_and_metalloid_transporters_____________________________________2022_______sprina___________________________________________________________________________e |
999 | 1 | 0 | |i 75be44ab-990c-49e2-8bd5-96e8ea72f9b8 |l 99119471159608501 |s US-NCD |m plant_metal_and_metalloid_transporters_____________________________________2022_______sprina___________________________________________________________________________e |
999 | 1 | 1 | |l a14414165 |s ISIL:US-CST |i Stanford |t BKS |a SUL-ELECTRONIC |p UNLOANABLE |